A New Metric for Quality of Network Community Structure
نویسندگان
چکیده
Modularity is widely used to effectively measure the strength of the community structure found by community detection algorithms. However, modularity maximization suffers from two opposite yet coexisting problems: in some cases, it tends to favor small communities over large ones while in others, large communities over small ones. The latter tendency is known in the literature as the resolution limit problem. To address them, we propose to modify modularity by subtracting from it the fraction of edges connecting nodes of different communities and by including community density into modularity. We refer to the modified metric as Modularity Density and we demonstrate that it indeed resolves both problems mentioned above. We describe the motivation for introducing this metric by using intuitively clear and simple examples. We also prove that this new metric solves the resolution limit problem. Finally, we discuss the results of applying this metric, modularity, and several other popular community quality metrics to two real dynamic networks. The results imply that Modularity Density is consistent with all the community quality measurements but not modularity, which suggests that Modularity Density is an improved measurement of the community quality compared to modularity.
منابع مشابه
Sampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملPresenting a Conceptual Model for Integrating Urban Space Network with \"Living Community\" Approach*
Undoubtedly, public spaces can be considered as an essential factor, which could contribute to urban arrangement, create and maintain a strong local center and enhance the quality of superior environment and the sense of citizenship. Moreover, integrity has always been the most basic structural qualities and one of the key principles of cities. Integrated urban spaces exhibit the integrated str...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملCommunity Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملA Mechanism for Detecting and Identifying DoS attack in VANET
VANET (Vehicular Ad-hoc Network) which is a hy- brid network (combination of infrastructure and infra- structure-less networks) is an emergent technology with promising future as well as great challenges especially in security. By the other hand this type of network is very sensible to safety problem. This paper focuses on a new mechanism for DoS (denial of service) attacks on the physical and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1507.04308 شماره
صفحات -
تاریخ انتشار 2013